Quinone binding and reduction by respiratory complex I.
نویسندگان
چکیده
Complex I (NADH:ubiquinone oxidoreductase) has a central function in oxidative phosphorylation and hence for efficient ATP production in most prokaryotic and eukaryotic cells. This huge membrane protein complex transfers electrons from NADH to ubiquinone and couples this exergonic redox reaction to endergonic proton pumping across bioenergetic membranes. Although quinone reduction seems to be critical for energy conversion, this part of the reaction is least understood. Here we summarize and discuss experimental evidence indicating that complex I contains an extended ubiquinone binding pocket at the interface of the 49-kDa and PSST subunits. Close to iron-sulfur cluster N2, the proposed immediate electron donor for ubiquinone, a highly conserved tyrosine constitutes a critical element of the quinone reduction site. A possible quinone exchange path leads from cluster N2 to the N-terminal β-sheet of the 49-kDa subunit. We discuss the possible functions of a highly conserved HRGXE motif and a redox-Bohr group associated with cluster N2. Resistance patterns observed with a large number of point mutations suggest that all types of hydrophobic complex I inhibitors also act at the interface of the 49-kDa and the PSST subunit. Finally, current controversies regarding the number of ubiquinone binding sites and the position of the site of ubiquinone reduction are discussed.
منابع مشابه
Activation of respiratory Complex I from Escherichia coli studied by fluorescent probes
Respiratory Complex I from E. coli may exist in two interconverting forms: resting (R) and active (A). The R/A transition of purified, solubilized Complex I occurring upon turnover was studied employing two different fluorescent probes, Annine 6+, and NDB-acetogenin. NADH-induced fluorescent changes of both dyes bound to solubilized Complex I from E. coli were characterized as a function of the...
متن کاملStructural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction.
The transfer of electrons and protons between membrane-bound respiratory complexes is facilitated by lipid-soluble redox-active quinone molecules (Q). This work presents a structural analysis of the quinone-binding site (Q-site) identified in succinate:ubiquinone oxidoreductase (SQR) from Escherichia coli. SQR, often referred to as Complex II or succinate dehydrogenase, is a functional member o...
متن کاملQuinone specificity of complex I.
This review considers the interaction of Complex I with different redox acceptors, mainly homologs and analogs of the physiological acceptor, hydrophobic Coenzyme Q. After examining the physical properties of the different quinones and their efficacy in restoring mitochondrial respiration, a survey ensues of the advantages and drawbacks of the quinones commonly used in Complex I activity determ...
متن کاملThe dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N.
Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by r...
متن کاملTowards the molecular mechanism of respiratory complex I.
Complex I (NADH:quinone oxidoreductase) is crucial to respiration in many aerobic organisms. In mitochondria, it oxidizes NADH (to regenerate NAD+ for the tricarboxylic acid cycle and fatty-acid oxidation), reduces ubiquinone (the electrons are ultimately used to reduce oxygen to water) and transports protons across the mitochondrial inner membrane (to produce and sustain the protonmotive force...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1797 12 شماره
صفحات -
تاریخ انتشار 2010